Package: bnviewer 0.1.6

bnviewer: Bayesian Networks Interactive Visualization and Explainable Artificial Intelligence

Bayesian networks provide an intuitive framework for probabilistic reasoning and its graphical nature can be interpreted quite clearly. Graph based methods of machine learning are becoming more popular because they offer a richer model of knowledge that can be understood by a human in a graphical format. The 'bnviewer' is an R Package that allows the interactive visualization of Bayesian Networks. The aim of this package is to improve the Bayesian Networks visualization over the basic and static views offered by existing packages.

Authors:Robson Fernandes [aut, cre, cph]

bnviewer_0.1.6.tar.gz
bnviewer_0.1.6.zip(r-4.5)bnviewer_0.1.6.zip(r-4.4)
bnviewer_0.1.6.tgz(r-4.5-any)bnviewer_0.1.6.tgz(r-4.4-any)
bnviewer_0.1.6.tar.gz(r-4.5-noble)bnviewer_0.1.6.tar.gz(r-4.4-noble)
bnviewer_0.1.6.tgz(r-4.4-emscripten)
bnviewer.pdf |bnviewer.html
bnviewer/json (API)

# Install 'bnviewer' in R:
install.packages('bnviewer', repos = c('https://robson-fernandes.r-universe.dev', 'https://cloud.r-project.org'))

Bug tracker:https://github.com/robson-fernandes/bnviewer/issues

On CRAN:

Conda:

bayesian-inferencebayesian-networkbayesian-networksprobabilistic-graphical-models

4.86 score 7 stars 1 packages 69 scripts 463 downloads 4 exports 109 dependencies

Last updated 4 years agofrom:924e6786c8. Checks:1 OK, 6 NOTE. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 14 2025
R-4.5-winNOTEMar 14 2025
R-4.5-macNOTEMar 14 2025
R-4.5-linuxNOTEMar 14 2025
R-4.4-winNOTEMar 14 2025
R-4.4-macNOTEMar 14 2025
R-4.4-linuxNOTEMar 14 2025

Exports:bn.to.igraphmodel.to.structurestrength.viewerviewer

Dependencies:assertthatbase64encbnlearnbslibcachemcaretclasscliclockcodetoolscolorspacecommonmarkcpp11crayondata.tablediagramdigestdplyre1071evaluatefansifarverfastmapfontawesomeforeachfsfuturefuture.applygenericsggplot2globalsgluegowergtablehardhathighrhtmltoolshtmlwidgetshttpuvigraphipredisobanditeratorsjquerylibjsonliteKernSmoothknitrlabelinglaterlatticelavalifecyclelistenvlubridatemagrittrMASSMatrixmemoisemgcvmimeModelMetricsmunsellnlmennetnumDerivparallellypillarpkgconfigplyrpROCprodlimprogressrpromisesproxypurrrR6rappdirsRColorBrewerRcpprecipesreshape2rlangrmarkdownrpartsassscalesshapeshinysourcetoolssparsevctrsSQUAREMstringistringrsurvivaltibbletidyrtidyselecttimechangetimeDatetinytextzdbutf8vctrsviridisLitevisNetworkwithrxfunxtableyaml